Assignment for class 12

General direction for the candidate: Notes provided must be copied in maths copy and then homework should be done in the same copy.

Determinant (continued): theorems and application

Theorem 4. (Note: proved in video link provided by school)

If A,B,C are all square matrices of same order n and A is non-singular matrix, then

- i) AB= AC ⇒ B=C(left cancellation law)
- ii) BA=CA ⇒ B=C.....(right hand cancellation)

Ex 4.4 Q25i) Find matrix A Satisfying the matrix equation $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} A \begin{bmatrix} 4 & 7 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Let
$$B = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
, $C = \begin{bmatrix} 4 & 7 \\ 3 & 5 \end{bmatrix}$

Given BAC=I

$$\Rightarrow$$
 B⁻¹(BAC)= B⁻¹I \Rightarrow (B⁻¹B)(AC)= B⁻¹ I

$$\Rightarrow$$
 (I)(AC)= B⁻¹ \Rightarrow AC= B⁻¹

$$\Rightarrow$$
 (AC) $C^{-1}=B^{-1}C^{-1}$ \Rightarrow A(C C^{-1})= $B^{-1}C^{-1}$

$$\Rightarrow$$
 A(I)= B⁻¹ C⁻¹

$$\Rightarrow$$
 A= B⁻¹ C⁻¹

since
$$|B|=-1$$
, adj $B=\begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix}$

$$\Rightarrow B^{-1} = \frac{1}{-1} \begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$$

similarly
$$|C|=-1$$
, adj $C=\begin{bmatrix} 5 & -7 \\ -3 & 4 \end{bmatrix}$,

$$\Rightarrow C^{-1} = \begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix}$$

Since A= B⁻¹ C⁻¹

$$\Rightarrow A = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix}$$

$$\Rightarrow A = \begin{bmatrix} 21 & -29 \\ -13 & 18 \end{bmatrix} Ans$$

Q22.i)
$$A^2 = AA = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}$$
, $AA = \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix}$, $5I = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$

$$\Rightarrow A^{2}-4A-5I = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix} - \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

To find A^{-1} By using $A^2 - 4A - 5I = 0$

$$\Rightarrow 5I = A^2 - 4A \Rightarrow I = \frac{A^2 - 4A}{5} = \frac{A(A - 4I)}{5}$$

$$\Rightarrow A^{-1}I = \frac{A^{-1}A(A-4I)}{5} = \frac{(A-4I)}{5}$$

$$\Rightarrow A^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} - \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{5} \begin{bmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{bmatrix} Ans$$

Q8iii)
$$A^4 = I \implies A^{-1}I = A^{-1}A^4 \implies A^{-1} = (A^{-1}A)A^3 \implies A^{-1} = IA^3$$

 $\implies A^{-1} = A^3$ Proved

Homework: Ex 4.4 8ii) Q24.ii) Q25. ii) Q21.ii), Q22.ii) Q23.iii)

Theorem 5. (Note: proved in video link provided by school)

If A ,B are inversible square matrix of same order, then AB is also inversible and (AB)⁻¹ =B⁻¹A⁻¹
HOMEWORK: Ex 4.4, Q20.

Theorem 6: If A is inversible matrix, then A^T is also inversible, and $(A^T)^{-1} = (A^{-1})^T$

(Note: proved in video link provided by school)

Theorem7 If A is non singular matrix of order n, then $|adj A| = |A|^{n-1}$ Note: proved in video link provided by school)

For Example If A is non singular matrix of order 3, then $|adj A| = |A|^2$

Q5. ii) Given |A| = -5, A is square matrix of order 3

$$|adj A| = |A|^2 = (-5)^2 = 25$$

Q6.ii) Without computing adj A, find
$$|adj A|$$
 If $A = \begin{bmatrix} -2 & 0 & 0 \\ 3 & 4 & 0 \\ 10 & -7 & 3 \end{bmatrix}$

We know adj $A = |A|^{n-1}$ Since order of matrix is (n) = 3

$$\Rightarrow$$
 |adj A| = |A|² \Rightarrow |A| = (-2)(12) = -24

$$\Rightarrow$$
 |adj A|= (-24)² = 576 Ans

Homework:Q5.iv), Q6.iii)